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Abstract. For 30 diamond- and zincblende-structure semiconductors, the bond lergth d, bond
polartity «p, bulk modulus B, elastic shear constants (c11 — ¢€12)/2 and c44, bond-stretching
force constant «, bond-bending force constant 8, internal displacement parameter £, effective
atomic charge Z¥, transfer parameter 8%, wransverse charge e}, and piezoelectric charge ep are
calculated from bond orbital calcnlations based on the tight-binding method. The results are
compared with previous theoretical calculations and experiments.

1. Introduction

Theoretical studies for the elastic properties of semiconductors have been made by
many researchers, using, for example, a bond-orbital model (BoM) [1,2], band-structure
calculations and the ‘special-points’ method [3], a first-principles linear-combination
of atomic orbitals (LCAO) method [4], pseudopotential methods with the local-density
approximation (LDA) [5-7], the linear muffin-tin orbitals (LMTO) method [8, 9], the universal
tight-binding parameters (UTBP) method [10], and the extended Hiickel tight-binding (XHTR)
method [11].

The LDA has proven to be an effective and useful means for studying both structural
and electronic properties in a few materials [5-7]. However, the inclusion of a total-energy
calculation in the problem necessarily makes the LDA theory more complicated than the
BOM theory; systematic study of the properties in many materials wonid need a powerful
computer, and it will take much time; therefore, the cost will be expensive.

In order to obtain the structural trends, the simple BOM is used in this paper to study
the elastic properties of semiconductors systematically. We calculate the bond length 4,
and bond polarity op, bulk modulus B, elastic shear constants (c11 — ¢12)/2 and ¢4, bond-
stretching force constant &, bond-bending force constant 8, internal displacement parameter
¢, effective atomic charge Z*, transfer parameter §*, transverse charge e, the piezoelectric
charge e;, and the ratios c1a/cyy, [(e11 —¢12)/21/B and 8 /e for 30 diamond- and zincblende-
structure semiconductors and compare the values with others from theoretical calculations
and experiments.
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2. Theoretical formalism

2.1. Bond length and polarity

Tight-binding theory has been able to obtain approximate but meaningful predictions of
the bonding properties of solids. In order to improve the description of the bond energy,
Baranowski [2] made a very simple modification of the overlap interaction on the basis of
the idea and method proposed by Harrison [1] and gave a formula for the bond length of
semiconductors. For all tetrahedral compounds, the bond length & can be obtained from [2]

_ (2noR/my'? @
(k28 — 4V

where for sp® bonds 7, = ifse — (2v3/4)gs — fgps, in which ng, = —14,
Mo = 1.84 and mppr = 3.24 are dimensionless Harrison [1] universal parameters and
B2 /m = 7.62 eV AZ. The effective parameter k will be given by the following average:

k = (kike;)' 2)

where k; and k; are connected with rows { and J, respectively, of the periodic table. The
cation—anion average hybrid energy &; is the weighted average given by

Ba = L (neel + mad) )

where n, and n, are the numbers of electrons associated with cations and anions,
respectively, which participate in the bonds. sf and gf are the average values of the cation
and anion hybrid energies, respectively:

g = 1S+ 3eg) @
& = 365 +3¢5)

in which &, &7, &f and &} are the free-atom energies for s and p states for the cations and
anions, respectively [12]. V5 is the hybrid polar energy, which can be approximated in the
following way:

Vs = L(ef — ). €
The bond polarity of the compound can be obtained from

Vy
T Er ViR ©

where V; is the hybrid covalent energy, which can be approximated in the following way:

le
Va=—no a2 - - N
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2.2. Bulk modulus and elastic shear constant
According to the BOM proposed by Baranowski [2], the bulk modulus is given by
2./3 7.8\ 1
B = (V2 o dz ) ro ’ &)
where the hybrid covalency o is defined by (1 — &2)'/2,
The elastic shear constant (¢ — c12)/2 is given by

ﬂ;—qz—) £(Vza J1+1)— 4'VPP"|)d3 ¥

where A is a dimensionless parameter, which is defined as follows:

3V, G o

5= Y3V =3V, , (10)
Vise = 24/3Vipe = 3Vpe

where Ve, Vipo, Vppe and V[,p,, in equation (9) are the matrix elements [1]. Combining

equations (8), (?) and B = —(cu -+ 2¢12), one can obtain the elastic constants

1

]
Cl1 = ? (Vzﬂf (B4+4i)— _l%pﬂi"‘z? ) a3 (i1)
and
' 7.8\ 1
€z = f (Vz G-+ = lepx|+4 )d3 - (12)

Within the framework of the valence force field model [1], the elastic stiffness constant
c44 and Kleinman’s internal displacement parameter ¢ of diamond- and zincblende-structure
semiconductors are given by

€ax = 3{c11 + 2era)(en — c12)/(Ten + 2612) (13}
7 = (e1 + 8erz}/(Tew + 2e12). (i4)

The macroscopic elastic constants B and (cy; — ¢12)/2 are related to force constants ¢ and
B by the equations [13]

3B = g(h + B) —0.3555C, (15)
and

(c11 —¢12) o \/3—' - -

— = g,a —0.0535C, (16)

where SCp is the Coulomb confribution (rather small for all III-V zincblende-structure
semiconductors). If we neglect the Coulomb contribution, the bond-stretching force constant
o and bond-bending force constant § can be obtained from

2d (c11 —¢€12)
_ 2 12 17
4d 1
o= EB — 5,8 7 (18)



8736 San-Guo Shen

Table 1. Predicted bond length of semiconductors. The experimental bond lengths are taken

frorm [14].

d (A) d &
Material  moMm Experiment  Material  BoM Experiment
C 1615 154 InAs 2618 261
Si 2357 235 _ InSh 2820 281
Ge 2448 244 BeS 1900 210
Sn 2802 281 BeSe 1988 220
SiC 1953 188 _ BeTe 2100 240
BN 1573 157 Zn$ 2300 234
BP 1957 197 ZnSe 2413 245
BAs 2016 207 ZnTe 2658 264
AlP 2343 236 _ Cds 2478 253
AlAs 2417 243 CdTe 2865  2.80
AlSb 2610 2.66 CuF 1534 184
GaP 2370 236 CuCi 2122 234
Gahs 2443 245 CuBr 2268 240
GaSh 2635 265 Cul 2576 . 2.62
InP 2538 254 Agl 2799 2.80

2.3. Transverse and piezoelectric charges

An effective charge Z* for a cation can be obtained in tight-binding theory as the column
number Z (it is less than four for a cation) for that element minus the sum over occupied
states of the squared amplitudes of the orbitals of that atom. The bond orbital approximation
gives an approximate value of [1]

Z*=Z—~4+da (19)
The transverse charge e} is given by
e =Z"+4p* 20
where §* is the transfer parameter, which is defined by
B* ={(d/4)8Z"/3d = 20,(1 — oeg). (21)
Similarly, the piezoelectric charge e; is given by
ey = 2% - [@d8%/3)(1 = £)/5. (22)

All effective charges for the anion are the negative charges of the cortesponding charges
for the cations given here.

3. Results and discussion

In this section we present the results of the BOM calculation for the bond length d,
bond polarity ¢, bulk modulus B, elastic shear constants (c11 — ¢12)/2 and c44, bond-
stretching force constant &, bond-bending force constant 8, internal displacement parameter
¢, effective atomic charge Z*, transfer parameter 8*, transverse charge ef and piezoelectric
charge ¢f for 30 diamond- and zincblende-structure semiconductors and compare their values
with other values from theoretical calculations and experiments.

(i) Predictions of the bond length for semiconductors are given in table 1 together with
the experimental values [14]. It is remarkable that the simple equation (1), which has been
given by Baranowski [2], can reproduce the bond length with an accuracy of the order of
a few per cent for most cases.
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(i) Results for the polarity o, obtained from BOM are listed in table 2, together with those
for the UTBP, Hiickel tight-binding (HTR), the XHTB methods [11], the cluster (Cl} method,
and Brillouin-zone (BZ) integration of the LCAO Hamiltonian [15]. For comparison, the
values of polarity o (= ﬁ-” %y given by Phillips (Ph) [11] and obtained by experiment (from
the experiment-deduced ionicity scale (the definition is the same as Harrison’s polarity) of
Ealter et af [16]), are also given in table 2. From a comparison of these values, we see that
results obtained from BOM are in good agreement with the experiments.

Table 2. Comparison of polarities from various calculations. Results for polarity e, obtained
from the BoM, the band-structure calculations based on the UTBP, HTB and xHTR methods, Ci
method, Bz integration of Lcao Hamiltonian, For comparison, the vaiues of polarity a, obtained
by Ph and in experiment are also given.

p
Material Cl BZ UTBP  HTB XHTE  Ph EOM  Experiment
§iC 616 010
AlP 042 044 034 033
AlAs 039 041 034 031
AlSb 032 034 C029 030
GaP 038 040 035 042 059 057 032 031

GaAs 035 037 033 037 053 056 032 030
GaSb 028 030 027 026 038 051 026 029

InP 046 048 043 046 066 065 040 032
InAs 042 044 040 042 061 0.60 040 030
InSb 035 037 035 033 049 057 034 029
ZnS 055 056 061 062 036 079 035 060
ZnSe 055 056 050 058 0.8 079 055 059
ZnTe 054 055 057 051 073 077 054 057
CdTe 058 059 063 054 077 082 061 058

(iii) The values of the transverse and piezoelectric charges obtained from equations
(20) and (22) with a B-value obtained from equation (21), are listed together with the
corresponding Z* in table 3. The experimental values {16] are also listed for comparison.
1t is clear from table 3 that the effective atomic charges are in good agreement with the
experiments in most cases; the transverse charges are about one electron less than in the
experiments. When the experimental value of o, is used in equation (20), one cannot obtain
the transverse charges, which are comparable with experiments. So the difference is not
only from c; this suggests a significant error in equation (20). The piezoelectric charges
are in good agreement with the experiments for III~V compound semiconductors.

(iv) The results for the covalency o, the values of the bulk moduius B together with
the elastic stiffness constants (c;; — ¢12}/2 and c¢44, bond-stretching force constant ¢, bond-
bending force constant 8 and Kleinman’s internal displacement parameters ¢ are shown in
table 4. The reliable values for ¢ are those obtained recently by Molinas-Mata and Cardona
[171 by the fitting of the phonon dispersion curves along the [100] and [111] axes with
planar force constants. The values that they obtained are 0.564 % 0.030 and 0.577 £ 0.027
for Si and Ge, respectively, to be compared with our values of 0.548 and 0.548. The LDA
[5] results of ¢ for Si and Ge are 0.56 and 0.57, respectively; they are in excelient agreement
with the results of {17]. ‘ .

The ratios c1z/cq1, [{€11 — €12)/2]/B(= «} and B/« are also given in table 4. It is clear
from the table that, according to our calculations, the ¢ and the ratio ¢;2/¢;) monotonically
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Table 3. Results calculated for diamond- and zincblende-structure semiconductors of effective
atornic charge Z*, transfer parameter g*, transverse charge ¢% and the piezoelectric charge e;.
For comparison, the values of experiment are also given.

z* g & e
Material  BOM Experiment = BOM BOM Experiment  BoM Experiment
SiC 0640  0.38 0312 106 257 0.300

BN ~0096 0.55 0429 0476 247 —0.577

BP —0452 0269 ~0.093 —0.745

BAs —(.480 0.256 —0.139 —~0.759

AP 0350 030 0598 115 228 —0.270

AlAs 0350 026 0598 115 230 —0270 —0.22
AlSb 0.157 0.19 0530 0864 1.93 —0.402

GaP 0279 0.24 0574 L04 204 —0320 —028
GaAs 0272 020 0572 103 216 —0.325 —0.47
GaSb 0051 015 0498 0703 215 —0470 —0.42
InP 0588 027 0669 148 255 —0.086

InAs 0592 021 0670 149 253 —0.083 —0.13
InSh 0,381 (.16 0608 Li9 242 —0248 —0.24
BeS —0.451 i 0.658 0.427 —LI2

BeSe  —0.452 0658 0426 —112

BeTe  —0.511 0.641  0.344 —117

7S 0.198 042 0767 122 215 —0490 033
ZnSe 021 0.34 0768 123 203 —0475 013
ZnTe 0.168 028 0766 119 2.00 —0524 008
Cds 0.456 0765 148 277 —0.176

CdTe D442 032 0.766 146 235 —0.194 (.09
CuF —0.805 0767 0218 —149

CuCl  —0445 030_ 0756 0563 112 ~1.05 035
CuBr —0393 029 0750 0607 149 —0.974

Cul —0294 021 0734  0.684 240 —-0.835

Agl —0.064 029 0677 0839 140 —0.495

decrease, while the ratios [(¢1; — ¢12)/2)/B and B/« monotonically increase with increase
in covalency. The results versus covalency are shown in figures 1-4. The trend of ¢ as
a function of ¢, is shown in figure 1; it is similar to that given by Martin [13], Harrison
[1] and Kitamura and Harrison [10]. The trends of [{c1, — ¢12)/2]/8 and c¢13/cr) versus
covalency o, are shown in figures 2 and 3, which are similar to that given by Kitamura ef a!
[11]. Falter et al [16] have given the ratio of the non-central (bond-bending) force constant
B to the central (bond-stretching) force constant & as a function of polarity. This ratio is a
measure of the importance of the covalent bond in stabilizing the tetrahedral structure. In
figure 4, we give a plot of 8/c as a function of covalency . The trend is similar to that
given by Falter et al [16].

{v) It is worth noting that there are several differences between the BOM and XHTB
methods. One is the basis state chosen. In the BOM, sp® orbitals for cations and anions are
selected as the basis states while, in the XHTB method, atomic orbitals are used as the basis
states. A second is that the BOM method includes only the first-nearest-neighbour interaction
for which universal parameters are optimized whereas, in the XHTE method, interactions are
taken into account up to a sufficiently large distance that the interactions became negligibly
small. The third is that the value of A in the BOM method is a constant value of 0,738
for all the diamond- and zincblende-structure semiconductors, while its value in the XHTB
method varies from 0.615 to 0.815. In addition, the bond length used in the ROM method
is the theoretical value, while in the XHTB method it is the experimental value,
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covalency o, central-force constant o as a function of the covalency

ele-

Comparison of bulk modulus B and elastic stiffness constants (¢yy — ¢12)/2, and c4s,
obtained from BOM calculations with the experimental values and XHTB calculation results
[11] are shown in table 5. The bond-stretching force constant ¢ and bond-bending force
constant B obtained from BOM calculations (neglecting the Coulomb contribution) with the
theoretical quantities « and 8 derived from the experimental values of B and (¢1; — €12)/2
(the Coulomb contribution is included) are also given in the table. Table 5 indicates that the
results obtained by using the BOM are in good agreement with the experimental and other
theoretical results. )

(vi) Table 6 shows the LDA results together with the experiment and our calculations for
bulk Si, Ge, AIP, AlAs, GaP and GaAs, Comparing the LDA resulis with experiment, we
can see that the LDA results agree very well. The excellent agreement between LDA results
and experimenta] data prove that the LDA method is accurate. Although the BOM results
are not as accurate as the LDA, the BOM results are reasonable. Because the BOM is very
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simple, it can be used for the systematic study of structural properties in many materials
and obtains the structural trends.

4. Summary

We have calculated the bond length d, bond polarity e, bulk modulus B, elastic shear
constant (£11 —cr2)/2 and cqq, bond-stretching force constant o, bond-bending force constant
B, internal displacement parameter {, effective atomic charge Z*, transfer parameter §*,
transverse charge e} and piezoelectric charge e} for 30 diamond- and zincblende-structure
semiconductors using the BOM and compared these resnlts with values obtained from other
theoretical calculations and experiments. For most materials, we find the following.

(1) The bond length and polarity are in good agreement with the experiments.

{2) The wransverse charges are about onre electron less than the experiments, and the
piezoelectric charges are in good agreement with the experiments (for II-V con@pound
semiconductors).

(3) The values of bulk modulus and elastic stiffness constants obtained from BOM
calculations are in good agreement with the experimental and the XHTB and LDA theoretical
results.

(4) ¢ and the ratio ¢;3/¢1; monotonically decrease, while the ratios [{c1; — ¢c12)/2)/B
and £/a monotonically increase with increasing covalency. Their trepds are the same as
experimental and other theoretical results.
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